Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
ERS Monograph ; 2022(98):48-58, 2022.
Article in English | EMBASE | ID: covidwho-20238378

ABSTRACT

Air pollution, climate and population health are closely related in terms of their impacts on respiratory health and lung cancer. Air pollutants contribute to the exacerbation of chronic respiratory problems such as COPD and asthma. Air pollutants are also toxic and carcinogenic, initiating and promoting lung cancer development. Climate change in relation to environmental pollution affects the geographical distribution of food supply and diseases such as pneumonia in adults and children. The threat of air pollution, and hence global warming and climate changes, and their effects on population and respiratory health, is an imminent threat to the world and deserves immediate and sustainable combating strategies and efforts. The goals are to increase public awareness and engagement in action, with alignment of international collaboration and policy, and with steering towards further research. Now is the prime time for international collaborative efforts on planning and actions to fight air pollution and climate change before it is too late.Copyright © ERS 2021.

2.
Atmospheric Environment ; 306 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20237416

ABSTRACT

The additional impact of emission-reduction measures in North China (NC) during autumn and winter on the air quality of downwind regions is an interesting but less addressed topic. The mass concentrations of routine air pollutants, the chemical compositions, and sources of fine particles (PM2.5) for January 2018, 2019, and 2020 at a megacity of Central China were identified, and meteorology-isolated by a machine-learning technique. Their variations were classified according to air mass direction. An unexpectedly sharp increase in emission-related PM2.5 by 22.7% (18.0 mug m-3) and 25.7% (19.4 mug m-3) for air masses from local and NC in 2019 was observed compared to those of 2018. Organic materials exhibited the highest increase in PM2.5 compositions by 6.90 mug m-3 and 6.23 mug m-3 for the air masses from local and NC. PM2.5 source contributions related to emission showed an upsurge from 1.39 mug m-3 (biomass burning) to 24.9 mug m-3 (secondary inorganic aerosol) in 2019 except for industrial processes, while all reduced in 2020. From 2018 to 2020, the emission-related contribution of coal combustion to PM2.5 increased from 10.0% to 19.0% for air masses from the local area. To support the priority natural gas quotas in northern China, additional coal in cities of southern China was consumed, raising related emissions from transportation activities and road dust in urban regions, as well as additional biofuel consumption in suburban or rural regions. All these activities could explain the increased primary PM2.5 and related precursor NO2. This study gave substantial evidence of air pollution control measures impacting the downwind regions and promote the necessity of air pollution joint control across the administration.Copyright © 2023 Elsevier Ltd

3.
Energies ; 16(9):3836, 2023.
Article in English | ProQuest Central | ID: covidwho-2318249

ABSTRACT

The accelerated digitization of the third decade of the twenty-first century poses a challenge both for science and for practice. The study presents partial results of continuous research on online reputation management of entities operating in the environment of low-carbon economy. The aim of the study is the application of a standardized methodology for calculating the Total level of Online Reputation (TOR) to determine the market position of selected Electric Vehicles (EVs) compared to the market position of conventional Vehicles with Internal Combustion Engines (ICEVs) in the online environment. The research sample consists of the ten best-selling Vehicles and the ten best-selling Electric Vehicles in the world by sales in the year 2021. Based on the measurement results and the subsequent analysis of the context, it can be concluded that the EV market shows the parameters of a developing market not only from the point of view of sales but also in terms of the overall level of Online Reputation as such. At the same time, it is possible to point out a high geographical specificity and significant disproportionality of the EV market compared to ICEVs. From the overall market perspective, the future of cars in the EV category is still unclear, as building trust in low-carbon products is limited by historical tradition. The main representatives of the EV industry thus represent the first forays of the onset of the low-carbon era in individual transport. The description of the issue will require the monitoring of status indicators over time. The results of the presented study can thus serve as a baseline and methodological framework for further research of the adoption of low-carbon policies in common practice.

4.
Forests ; 14(3), 2023.
Article in English | Scopus | ID: covidwho-2292820

ABSTRACT

The COVID-19 pandemic brought a period of high consumption of protective masks and an increase in their waste. Therefore, it was necessary to look at possibilities for their disposal. This article is focused on the disposal of FFP2 masks in the form of pellets blended with sawdust. Further, their ash melting behavior was observed. The method of ash preparation can impact the resulting values of melting temperatures. Therefore, this article investigates the resulting values of ash melting temperatures determined during different ash preparations, such as temperatures (550 °C and 815 °C) and ash size (non-sifted, smaller than 50 µm and 100 µm). All measured deformation temperatures were higher than 1100 °C and even higher than 1200 °C for some samples. Moreover, the presence of FFP2 masks in pellets only insignificantly affected the values of melting temperatures compared to pure wood pellets. The measured values also showed that increasing the temperature of ash preparation from 550 to 815 °C can increase the resulting values of melting temperature. The most significant proportion of the fraction size on the resulting melting temperatures was observed for beech with 5% and 10% of masks at an ash temperature of 550 °C and for spruce with 10% of masks at an ash temperature of 815 °C. © 2023 by the authors.

5.
International Journal of Current Pharmaceutical Review and Research ; 14(4):1-6, 2022.
Article in English | EMBASE | ID: covidwho-2297372

ABSTRACT

Nanotechnology is a new and rapidly evolving subject in the pharmacological and therapeutic professions. Nanoparticles have many advantages as medication delivery systems, including increased efficacy and fewer adverse drug reactions. This study investigated the roles of nanomedicine and drug delivery systems in the pharmaceutical industry, as well as the advantages and disadvantages of nanotechnology. The study used a qualitative research technique, with online survey questionnaires sent to medical professionals and experts in the field of nanomedicine. These surveys comprised open-ended questions that enabled respondents to record their responses in whatever way they deemed fit. The ten respondents were from a variety of medical and health institutes, as well as medical consulting firms. In terms of results, the research established that nanomedicine had been used in medical care for therapy and diagnostic purposes. They are being explored in clinical trials for several reasons. Nanoparticles are used to treat renal disease, Tuberculosis, skin problems, Alzheimer's disease, and various types of cancer and to create COVID-19 vaccines. Further information about the study findings may be found in the results and discussion chapter.Copyright © 2022 Dr. Yashwant Research Labs Pvt. Ltd.. All rights reserved.

6.
Atmospheric Environment ; 302 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2295206

ABSTRACT

Acid deposition and particulate matter (PM) pollution have declined considerably in China. Although metal(loid) and acid deposition and PM have many common sources, the changes of metal(loid) deposition in China in the recent decade have not been well explored by using long-term monitoring. Therefore, we analyzed the dry and wet deposition of eleven metal(loid)s (including Al, As, Ba, Cd, Cu, Cr, Fe, Mn, Pb, Sr, and Zn) from 2017 to 2021 at Mount Emei, which is adjacent to the most economic-developed region in western China (Sichuan Basin (SCB)). Anthropogenic emissions contributed to over 80% of the annual wet deposition fluxes of metal(loid)s and acids (SO4 2-, NO3 -, and NH4 +) at Mount Emei, and the major source regions were the SCB, the Yunnan-Guizhou Plateau, and Gansu Province. Metal(loid) and acid deposition had similar seasonal variations with higher wet deposition fluxes in summer but higher wet deposition concentrations and dry fluxes in winter. The seasonal variations were partially associated with higher precipitation but lower pH in summer (968 mm and 5.52, respectively) than in winter (47 mm and 4.73, respectively). From 2017 to 2021, metal(loid) deposition did not decline as substantially as acid deposition (5.6%-30.4%). Both the annual total deposition fluxes and concentrations of Cr, Cu, Sr, Ba, and Pb were even higher in 2020-2021 than in 2017-2018. The inter-annual and seasonal changes implied the responses of metal(loid) deposition to anthropogenic emission changes were buffered (e.g., transformation, dilution, and degradation) by precipitation rates, acidity, natural emissions, and chemical reactions in the atmosphere, among others.Copyright © 2023 Elsevier Ltd

7.
International Journal of Hydrogen Energy ; 48(25):9401-9425, 2023.
Article in English | Academic Search Complete | ID: covidwho-2276909

ABSTRACT

Transportation sector is the important sector and consumed the most fossil fuel in the world. Since COVID-19 started in 2019, this sector had become the world connector because every country relies on logistics. The transportation sector does not only deal with the human transportation but also relates to logistics. Research in every country has searched for alternative transportation to replace internal combustion engines using fossil fuel, one of the most prominent choices is fuel cells. Fuel cells can use hydrogen as fuel. Hydrogen can be fed to the fuel cells to provide electric power to drive vehicles, no greenhouse gas emission and no direct combustion required. The fuel cells have been developed widely as the 21st century energy-conservation devices for mobile, stationary, and especially vehicles. The fuel cell electric vehicles using hydrogen as fuel were also called hydrogen fuel cell vehicles or hydrogen electric vehicles. The fuel cells were misconceived by several people that they were batteries, but the fuel cells could provide electric power continuously if their fuel was provided continuously. The batteries could provide electric power as their only capacities, when all ions are released, no power could be provided. Because the fuel cell vehicles play important roles for our future transportation, the overall review for these vehicles is significantly interesting. This overall review can provide general and technical information, variety of readers;vehicle users, manufacturers, and scientists, can perceive and understand the fuel cell vehicles within this review. The readers can realize how important the fuel cell technologies are and support research around the world to drive the fuel cell vehicles to be the leading vehicles in our sustainable developing world. [Display omitted] • Fuel cells use hydrogen as fuel to provide electric power. • Fuel cells do not emit greenhouse gas and do not require direct combustion. • The fuel cell electric vehicles (FCEVs) are one of the zero emission vehicles. • Fuel cell technology has been developed for many types of vehicles. • Hydrogen production, transportation, storage and usage links play roles on FCEVs. [ABSTRACT FROM AUTHOR] Copyright of International Journal of Hydrogen Energy is the property of Pergamon Press - An Imprint of Elsevier Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

8.
Energies ; 16(3):1281, 2023.
Article in English | ProQuest Central | ID: covidwho-2265172

ABSTRACT

The current study aims to investigate and compare the effects of waste plastic oil blended with n-butanol on the characteristics of diesel engines and exhaust gas emissions. Waste plastic oil produced by the pyrolysis process was blended with n-butanol at 5%, 10%, and 15% by volume. Experiments were conducted on a four-stroke, four-cylinder, water-cooled, direct injection diesel engine with a variation of five engine loads, while the engine's speed was fixed at 2500 rpm. The experimental results showed that the main hydrocarbons present in WPO were within the range of diesel fuel (C13–C18, approximately 74.39%), while its specific gravity and flash point were out of the limit prescribed by the diesel fuel specification. The addition of n-butanol to WPO was found to reduce the engine's thermal efficiency and increase HC and CO emissions, especially when the engine operated at low-load conditions. In order to find the suitable ratio of n-butanol blends when the engine operated at the tested engine load, the optimization process was carried out by considering the engine's load and ratio of the n-butanol blend as input factors and the engine's performance and emissions as output factors. It was found that the multi-objective function produced by the general regression neural network (GRNN) can be modeled as the multi-objective function with high predictive performances. The coefficient of determination (R2), mean absolute percentage error (MAPE), and root mean square error (RSME) of the optimization model proposed in the study were 0.999, 2.606%, and 0.663, respectively, when brake thermal efficiency was considered, while nitrogen oxide values were 0.998, 6.915%, and 0.600, respectively. As for the results of the optimization using NSGA-II, a single optimum value may not be attained as with the other methods, but the optimization's boundary was obtained, which was established by making a trade-off between brake thermal efficiency and nitrogen oxide emissions. According to the Pareto frontier, the engine load and ratio of the n-butanol blend that caused the trade-off between maximum brake thermal efficiency and minimum nitrogen oxides are within the approximate range of 37 N.m to 104 N.m and 9% to 14%, respectively.

9.
Journal of Environmental Sciences (China) ; 135:424-432, 2024.
Article in English | Scopus | ID: covidwho-2286087

ABSTRACT

The outbreak of COVID-19 has caused concerns globally. To reduce the rapid transmission of the virus, strict city lockdown measures were conducted in different regions. China is the country that takes the earliest home-based quarantine for people. Although normal industrial and social activities were suspended, the spread of virus was efficiently controlled. Simultaneously, another merit of the city lockdown measure was noticed, which is the improvement of the air quality. Contamination levels of multiple atmospheric pollutants were decreased. However, in this work, 24 and 14 air fine particulate matter (PM2.5) samples were continuously collected before and during COVID-19 city lockdown in Linfen (a typical heavy industrial city in China), and intriguingly, the unreduced concentration was found for environmentally persistent free radicals (EPFRs) in PM2.5 after normal life suspension. The primary non-stopped coal combustion source and secondary Cu-related atmospheric reaction may have impacts on this phenomenon. The cigarette-based assessment model also indicated possible exposure risks of PM2.5-bound EPFRs during lockdown of Linfen. This study revealed not all the contaminants in the atmosphere had an apparent concentration decrease during city lockdown, suggesting the pollutants with complicated sources and formation mechanisms, like EPFRs in PM2.5, still should not be ignored. © 2022

10.
8th International Engineering, Sciences and Technology Conference, IESTEC 2022 ; : 130-137, 2022.
Article in Spanish | Scopus | ID: covidwho-2285313

ABSTRACT

For a city to become resilient, smart measures must be taken that can cope with unexpected events such as the arrival of a pandemic or natural disasters caused by climate change and also prevent further destruction of our planet. Transport powered by combustion engines is one of the main emitters of greenhouse gases that increase the temperature of the planet and cause climate change. The public transport service of the city of Quito is the most used by its inhabitants and is mostly made up of combustion engine buses, however, during certain months of the years 2020 and 2021 it was suspended and the capacity was also limited to prevent the spread of the covid-19 virus, as it has become one of the main sources of contagion. The limitation of public transport led to economic, political and social instability. Some citizens and transport operators chose to break the law due to the limitations of public transport. Given the demand for transport, this study calibrated ten multinomial logit econometric models to estimate the probability of acceptance of the bicycle as an alternative mode of transport to public transport and taxis in the financial sector of Quito, using stated and revealed preference surveys. The bicycle is considered as a sustainable means of transport capable of solving the need to move around with social distance and in situations where public transport is limited. © 2022 IEEE.

11.
Gondwana Research ; 114:41730.0, 2023.
Article in English | Scopus | ID: covidwho-2242412

ABSTRACT

Emissions of black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) from various anthropogenic activities are often reported, yet cultural practices such as the multi-day Diwali festival and its influences on the emissions of these compounds are often overlooked. Major activities during this festival include burning rows of oil-filled earthen lamps (diyas) and fireworks (bursting of crackers). A comprehensive field investigation was conducted to document the role of Diwali celebrations on the releases of BC and PAHs during the ongoing Covid pandemic. The results show that large-scale releases of BC and PAHs were observed on the first day of Diwali compared to the remaining four days. BC and PM2.5 mass concentrations throughout the monitoring period ranged from 3.24 to 27.64 µg m−3 and 83.33 to 288.13 µg m−3, respectively. The source apportionment was performed based on the calculated backward trajectories. The results show that the contribution of fossil fuel emission at Adityapur (ADP), Sakchi (SAK), and Gamharia (GMA) was approximately 36.1 %, 34.4 %, and 55.56 %, while biomass burning contribution was approx. 56.9 %, 59.9 %, 41.67 %, respectively. The result showed that fossil fuel emissions were lower compared to biomass combustion during Diwali. Simultaneously, PAHs diagnostic ratio showed that vehicular discharge and coal burning significantly contributed to PAHs at these study sites. © 2022 The Author(s)

12.
Atmospheric Environment ; 293, 2023.
Article in English | Scopus | ID: covidwho-2241340

ABSTRACT

Particle size distribution is a major factor in the health and climate effects of ambient aerosols, and it shows a large variation depending on the prevailing atmospheric emission sources. In this work, the particle number size distributions of ambient air were investigated at a suburban detached housing area in northern Helsinki, Finland, during a half-year period from winter to summer of 2020. The measurements were conducted with a scanning mobility particle sizer (SMPS) with a particle size range of 16–698 nm (mobility diameter), and the events with a dominant particle source were identified systematically from the data based on the time of the day and different particle physical and chemical properties. During the measurement period, four different types of events with a dominant contribution from either wood-burning (WB), traffic (TRA), secondary biogenic (BIO), or long-range transported (LRT) aerosol were observed. The particle size was the largest for the LRT events followed by BIO, WB, and TRA events with the geometric mean diameters of 72, 62, 57, and 41 nm, respectively. BIO and LRT produced the largest particle mode sizes followed by WB, and TRA with the modes of 69, 69, 46, and 25 nm, respectively. Each event type had also a noticeably different shape of the average number size distribution (NSD). In addition to the evaluation of NSDs representing different particle sources, also the effects of COVID-19 lockdown on specific aerosol properties were studied as during the measurement period the COVID-19 restrictions took place greatly reducing the traffic volumes in the Helsinki area in the spring of 2020. These restrictions had a significant contribution to reducing the concentrations of NOx and black carbon originating from fossil fuel combustion concentration, but insignificant effects on other studied variables such as number concentration and size distribution or particle mass concentrations (PM1, PM2.5, or PM10). © 2022 The Authors

13.
Chemosphere ; 311, 2023.
Article in English | Scopus | ID: covidwho-2246826

ABSTRACT

Energy crisis and increasing rigorous management standards pose significant challenges for solid waste management worldwide. Several emerging diseases such as COVID-19 aggravated the already complex solid waste management crisis, especially sewage sludge and food waste streams, because of the increasingly large production year by year. As mature waste disposal technologies, landfills, incineration, composting, and some other methods are widespread for solid wastes management. This paper reviews recent advances in key sewage sludge disposal technologies. These include incineration, anaerobic digestion, and valuable products oriented-conversion. Food waste disposal technologies comprised of thermal treatment, fermentation, value-added product conversion, and composting have also been described. The hot topic and dominant research foci of each area are summarized, simultaneously compared with conventional technologies in terms of organic matter degradation or conversion performance, energy generation, and renewable resources production. Future perspectives of each technology that include issues not well understood and predicted challenges are discussed with a positive effect on the full-scale implementation of the discussed disposal methods. © 2022 Elsevier Ltd

14.
International Journal of Hydrogen Energy ; 2022.
Article in English | Scopus | ID: covidwho-2234522

ABSTRACT

Transportation sector is the important sector and consumed the most fossil fuel in the world. Since COVID-19 started in 2019, this sector had become the world connector because every country relies on logistics. The transportation sector does not only deal with the human transportation but also relates to logistics. Research in every country has searched for alternative transportation to replace internal combustion engines using fossil fuel, one of the most prominent choices is fuel cells. Fuel cells can use hydrogen as fuel. Hydrogen can be fed to the fuel cells to provide electric power to drive vehicles, no greenhouse gas emission and no direct combustion required. The fuel cells have been developed widely as the 21st century energy-conservation devices for mobile, stationary, and especially vehicles. The fuel cell electric vehicles using hydrogen as fuel were also called hydrogen fuel cell vehicles or hydrogen electric vehicles. The fuel cells were misconceived by several people that they were batteries, but the fuel cells could provide electric power continuously if their fuel was provided continuously. The batteries could provide electric power as their only capacities, when all ions are released, no power could be provided. Because the fuel cell vehicles play important roles for our future transportation, the overall review for these vehicles is significantly interesting. This overall review can provide general and technical information, variety of readers;vehicle users, manufacturers, and scientists, can perceive and understand the fuel cell vehicles within this review. The readers can realize how important the fuel cell technologies are and support research around the world to drive the fuel cell vehicles to be the leading vehicles in our sustainable developing world. © 2022 Hydrogen Energy Publications LLC

15.
UPB Scientific Bulletin, Series D: Mechanical Engineering ; 84(4):129-142, 2022.
Article in English | Scopus | ID: covidwho-2168610

ABSTRACT

One of the most important events in recent years is the Covid-19 epidemic, which began in 2019 and continues to this day. The virus is transmitted in several ways, including medical waste (face masks, hand gloves, gowns, covers, etc.) Medical waste has increased, and the only successful way of treatment is incineration. The paper presents a design model of a mobile medical incinerator for Health Care Centres of Covid-19 in Baghdad. The clinical capacity of one centre is 50 beds and the amount of waste produced is 100 kg per day. The mobile incinerator presented has a capacity of 25 kg/h, has high efficiency, and eliminates the transmission of the virus from one area to another, by waste. The incineration process leads to the reduction of waste weight by 75% and waste volume by 95%. The paper presents a model to calculate the volume of the primary and secondary combustion chambers. The mass of gas fuel added to the burners, the volume of flue gases resulted from the medical waste combustion and the residence time of the resulting gases in the secondary combustion chamber are determined. © 2022, Politechnica University of Bucharest. All rights reserved.

16.
Chemosphere ; : 136913, 2022.
Article in English | ScienceDirect | ID: covidwho-2082958

ABSTRACT

The CO2 emission is enhancing drastically because of the continuous emission from industries and transport sector. Although the CO2 emission had decreased in the first half of 2020 by 8.8% due to COVID-19 restrictions however, it is again on the rise and it might exceed the estimated level in 2030. The current methods used for CO2 separation have serious operational and environmental constraints. To overcome these problems we have devised a supported ionic liquid membrane (SILM) incorporated with the blend of bimetallic metal-organic framework (MOF) of copper and magnesium ions (CuxMgx) and Trihexyltetradecylphosphonium chloride [P66614] [Cl] ionic liquid (IL). CuxMgx MOF were synthesized and characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), and energy dispersive X-ray analysis (EDX). CuxMgx MOF with [P66614] [Cl] IL were immobilized on a flat sheet of polytetrafluoroethylene (PTFE) membrane. Single gas permeation tests of membranes loaded with 0.2/0.8 wt/wt% MOF/IL solution showed the highest CO2 permeability of 2937 Barrer and CO2/N2 selectivity of 33.26. The performance of SILM was also investigated with different water loadings of (30 wt % and 50 wt %) in addition to MOF/IL solution and at different feed pressure varying from 0.5 to 2 bars. Membranes showed enhancement in CO2 permeability to 3738 and 4628 Barrer whereas CO2/N2 selectivity decreased to 23.53 and 21.8 with membranes loaded with 30 and 50 wt % water, respectively, at a feed pressure of 2 bar. The gas permeation results show that the incorporation of CuxMgx MOF with IL in polymeric membrane enhances the CO2/N2 separation under humid conditions but slightly decreases CO2/N2 selectivity with an increase in feed pressure. The supported ionic liquids membrane synthesized in this research is highly viable for industrial flue gases because of the incorporation of phosphorous-based ILs that have high thermal stability.

17.
Engineering ; 14:44-51, 2022.
Article in English | Web of Science | ID: covidwho-2082463

ABSTRACT

Climate change is the greatest environmental threat to humans and the planet in the 21st century. Global anthropogenic greenhouse gas emissions are one of the main causes of the increasing number of extreme climate events. Cumulative carbon dioxide (CO2) emissions showed a linear relationship with cumulative temperature rise since the pre-industrial stage, and this accounts for approximately 80% of the total anthropogenic greenhouse gases. Therefore, accurate and reliable carbon emission data are the foundation and scientific basis for most emission reduction policymaking and target setting. Currently, China has made clear the ambitious goal of achieving the peak of carbon emissions by 2030 and achieving carbon neutrality by 2060. The development of a finer-grained spatiotemporal carbon emission database is urgently needed to achieve more accurate carbon emission monitoring for continuous implementation and the iterative improvement of emission reduction policies. Near-real-time carbon emission monitoring is not only a major national demand but also a scientific question at the frontier of this discipline. This article reviews existing annual-based carbon accounting methods, with a focus on the newly developed real-time carbon emission technology and its current application trends. We also present a framework for the latest near-real-time carbon emission accounting technology that can be widely used. The development of relevant data and methods will provide strong database support to the policymaking for China's "carbon neutrality" strategy. Finally, this article provides an outlook on the future of real-time carbon emission monitoring technology.(c) 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

18.
Sustainability ; 14(19):12837, 2022.
Article in English | ProQuest Central | ID: covidwho-2066469

ABSTRACT

This manuscript proposes an integrated system for treating hospital solid waste (H.S.W.) consisting of an incineration and frictional sterilization system capable of operating during normal and emergency situations. We analyzed the benefits of integrating different hospital solid waste (H.S.W.) treatment systems with the existing stand-alone incineration system, with a particular emphasis on the thermal friction sterilization integration system. The objective was to define the economic advantages and benefits in terms of resources recovery of using the thermal frictional sterilization–incineration integrated system during the hospital’s normal and emergency/pandemic operating conditions. We modeled three modeling scenarios based on normal and emergency operating conditions. The results show that the H.S.W. was composed of 74% general H.S.W. Existing incineration systems would be the most expensive process because the sanitary transportation cost represented approximately 96% of the H.S.W. costs. The hospital would realize 40–61% savings relative to the existing method if the integrated incineration–frictional systems were implemented to treat 50–70% of H.S.W.;the savings were better than in other scenarios. Proposed scenario 3 had a much better resources recovery factor than scenarios 1 and 2. This modeling study showed that a thermal frictional sterilization–incineration system could work well even under emergency conditions if the H.S.W. in-house sorting/transportation/storage process is modified to cater to other H.S.W. treatment/sterilization systems.

19.
Atmospheric Chemistry and Physics ; 22(18):12153-12166, 2022.
Article in English | ProQuest Central | ID: covidwho-2040263

ABSTRACT

A knowledge gap exists concerning how chemical composition and sources respond to implemented policy control measures for aerosols, particularly in a semi-arid region. To address this, a single year's offline measurement was conducted in Hohhot, a semi-arid city in northern China, to reveal the driving factors of severe air pollution in a semi-arid region and assess the impact of the COVID-19 lockdown measures on chemical characteristics and sources of PM2.5. Organic matter, mineral dust, sulfate and nitrate accounted for 31.5 %, 14.2 %, 13.4 % and 12.3 % of the total PM2.5 mass, respectively. Coal combustion, vehicular emission, crustal source and secondary inorganic aerosols were the main sources of PM2.5 in Hohhot, at 38.3 %, 35.0 %, 13.5 %, and 11.4 %, respectively. Due to the coupling effect of emission reduction and improved atmospheric conditions, the concentration of secondary inorganic components, organic matter and elemental carbon declined substantially from the pre-lockdown (pre-LD) period to the lockdown (LD) and post-lockdown (post-LD) periods. The source contribution of secondary inorganic aerosols increased (from 21.1 % to 37.8 %), whereas the contribution of vehicular emission reduced (from 35.5 % to 4.4 %) due to lockdown measures. The rapid generation of secondary inorganic components caused by unfavorable meteorological conditions during lockdown led to serious pollution. This study elucidates the complex relationship between air quality and environmental policy.

20.
Nano-enabled Agrochemicals in Agriculture ; : 1-6, 2022.
Article in English | Scopus | ID: covidwho-2035538

ABSTRACT

There are two major challenging problems facing humanity today which are the ongoing Coronavirus disease (COVID-19) pandemic started in late 2019 and the environmental crisis due to fossil fuels combustion causing over increase of greenhouse gases in the atmosphere. While the first problem seems to be a temporary remedy for the second one due to less travels by individuals, actual solution of both problems may require comprehensive scientific, technological, and socioeconomic decisions. In this chapter we look at the role of nanotechnology and nano-scale materials towards the solution of these two major challenges. © 2022 Elsevier Inc. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL